In der Medizin werden Magnetfelder von Herz- und Hirnaktivitäten gemessen, um Krankheiten frühzeitig zu diagnostizieren. Um auch kleinste Magnetfelder zu messen, arbeiten Forschende des Fraunhofer IAF an einem neuen Ansatz: der Diamant-basierten Laserschwellen-Magnetometrie. Dabei soll Diamant mit einer hohen Dichte an Stickstoff-Vakanz-Zentren in einem Lasersystem eingesetzt werden. Nun ist den Forschenden ein Meilenstein gelungen: Sie konnten die weltweit erste Messung magnetfeldabhängiger stimulierter Emission zeigen und sogar einen neuen Kontrast-Rekord aufstellen. Damit haben sie erstmals das Prinzip der Laserschwellen-Magnetometrie demonstriert. Publiziert wurden die Ergebnisse in der Fachzeitschrift Science Advances.

In der medizinischen Diagnostik werden sensitive Sensoren benötigt, um beispielsweise die schwachen Magnetfelder der Herz- und Hirnaktivitäten (MKG, MEG) des menschlichen Körpers zu messen. Verfahren, die auf der Detektion von Magnetfeldern basieren, wie etwa die Magnetresonanztomographie (MRT), ermöglichen es, Krankheiten frühzeitig zu diagnostizieren. Die notwendige Präzision wird jedoch nur von wenigen hochsensitiven Magnetfeldsensoren erreicht, die jeweils große technische Hürden für die klinische Anwendung darstellen. Die bereits etablierten SQUID-Sensoren benötigen eine aufwendige Tieftemperatur-Kühlung von ca. -270 Grad Celsius. Eine andere Möglichkeit sind optisch gepumpte Gaszellenmagnetometer (OPMs). Diese erreichen zwar auch ohne eine kryogene Kühlung höchste Sensitivitäten, haben jedoch den Nachteil, dass sie eine absolute Abschirmung aller Hintergrundfelder, also auch des Erdmagnetfelds, benötigen und somit massive bautechnische Anforderungen an Räume und Gebäude stellen. Deshalb sind im klinischen Alltag weiterhin die ungenaueren elektrischen Messungen (EKG, EEG) gängig.

Am Fraunhofer-Institut für Angewandte Festkörperphysik IAF in Freiburg forscht ein Projektteam bereits an einer geeigneteren Alternative: »Unser Ziel ist es, einen extrem sensiblen Magnetfeldsensor zu entwickeln, der bei Raumtemperatur sowie auch bei vorhandenen Hintergrundfeldern funktioniert und damit praktikabel in der klinischen Umsetzung ist«, erklärt Dr. Jan Jeske, Projektleiter am Fraunhofer IAF.

Mit Diamant und Laser kleinste Magnetfelder messen

In dem vom Bundesministerium für Bildung und Forschung geförderten Projekt »NV-dotierter CVD-Diamant für ultra-sensitive Laserschwellen-Magnetometrie« (kurz: DiLaMag) forscht Jeske mit seinem Team an einem weltweit neuen Ansatz für hochsensitive Quanten-Magnetfeldsensoren: Diamant soll zum ersten Mal in einem Lasersystem eingesetzt werden und damit erheblich präzisere Magnetfeld-Messungen ermöglichen.

Für das Vorhaben wird Diamant mit einer hohen Dichte an Stickstoff-Vakanz-Zentren (NV-Zentren) ausgestattet. »Aufgrund seiner Materialeigenschaften kann Diamant mit einer hohen Dichte an NV-Zentren die Messpräzision wesentlich verbessern, wenn er als Lasermedium eingesetzt wird«, erläutert Jeske. NV-Zentren in Diamant sind atomare Systeme aus einem Stickstoff-Atom und einer Kohlenstoff-Fehlstelle. Sie absorbieren grünes Licht und emittieren rotes Licht. Da die Leuchtkraft dieser atomar kleinen NV-Zentren von der Stärke eines äußeren Magnetfeldes abhängt, können sie genutzt werden, um Magnetfelder mit hoher lokaler Auflösung und guter Empfindlichkeit zu messen.

Erste experimentelle Demonstration der Laserschwellen-Magnetometrie

Nach mehrjähriger Forschungsanstrengung hat das Team um Jeske einen wichtigen Meilenstein erreicht: Es hat die weltweit erste Messung magnetfeldabhängiger stimulierter Emission demonstriert. Dabei haben die Forschenden eine interessante Entdeckung gemacht: »Wir beobachteten einen sehr relevanten und bisher in NV-Diamant unbekannten physikalischen Prozess: die durch grüne Lasereinstrahlung induzierte Absorption roten Lichts«, berichtet Jeske.

Mit NV-Diamant als Lasermedium haben sie nicht nur eine Verstärkung der Signalleistung durch stimulierte Emission um 64 Prozent erreicht. Das Projektteam konnte sogar einen weltweiten Rekord verbuchen: Die magnetfeldabhängige Emission zeigt einen Kontrast von 33 Prozent und eine maximale Ausgangsleistung im mW-Bereich. Dies ist ein neuer Kontrast-Rekord in der Magnetometrie mit NV-Ensembles.

Verantwortlich dafür ist die stimulierte Emission. »Wir konnten zeigen, dass dieser Rekord mit spontaner Emission nicht möglich gewesen wäre. Somit haben wir das theoretische Prinzip der Laserschwellen-Magnetometrie erstmals experimentell demonstriert«, betont Jeske. Diese Ergebnisse zeigen zudem die Vorteile von Diamant-basierter Laserschwellen-Magnetometrie gegenüber konventionellen Methoden und beweisen, dass damit die Messung kleinster Magnetfelder möglich ist.

Große Fortschritte bei der Herstellung von NV-Diamant

Das Konzept der Laserschwellen-Magnetometrie funktioniert nur, wenn Diamant eine sehr hohe Dichte an NV-Zentren aufweist und gleichzeitig gute optische Eigenschaften behält. Aus diesem Grund hat das Projektteam umfangreiche Materialarbeiten geleistet, um Diamant entsprechend zu optimieren. Diese Arbeiten umfassen zum einen die Herstellung von Diamant mittels CVD (Chemical Vapour Deposition) und zum anderen die Nachbearbeitung per Elektronenbestrahlung und Temperaturbehandlung für eine Erhöhung der NV-Dichte.

Beim Diamantwachstum per CVD, was einen sehr präzisen und kontrollierten Einbau von NV-Zentren ermöglicht, konnten die Forschenden bereits eine hohe Stickstoff-Dotierung erreichen. Mittels Elektronenbestrahlung haben sie daraufhin eine optimale Fluenz für die Stickstoff-Dichte ermittelt und damit eine Erhöhung der NV-Dichte um das 20 bis 70-Fache erzielt. Absorptionsspektren ermöglichten es ihnen, die Entstehung der NV-Zentren live zu verfolgen. Bei der Charakterisierung haben sie die Zusammenhänge zwischen drei entscheidenden Faktoren für optimale NV-Ensembles hergestellt und diese optimiert: eine hohe NV-Dichte, eine hohe Umsetzung von substituiertem Stickstoff mittels Bestrahlung mit hoher Fluenz sowie eine hohe Ladungsstabilität. Dank dieser ausführlichen Studien ist es dem Team am Fraunhofer IAF erstmals gelungen, CVD-Diamant mit einer hohen Dichte an NV-Zentren und in guter Qualität herzustellen und damit die Voraussetzung für die Entwicklung der Diamant-basierten Laserschwellen-Magnetometrie zur Messung kleinster Magnetfelder zu schaffen.

Die RMIT University (Australien), die National Institutes for Quantum and Radiological Science and Technology (Japan) und das College of Staten Island (USA) wirkten bei der wissenschaftlichen Veröffentlichung mit.

Das Bundesministerium für Bildung und Forschung fördert DiLaMag im Rahmen des Nachwuchswettbewerbs »NanoMatFutur« – einer Maßnahme zur Förderung hochqualifizierten wissenschaftlichen Nachwuchses im Bereich der Materialforschung (FKZ: 13XP5063).

Veröffentlichung in Science Advances: 

Magnetic-Field-Dependent Stimulated Emission from Nitrogen-Vacancy Centres in Diamond, Hahl et al., Sci. Adv. 8, eabn7192 (2022) https://www.science.org/doi/10.1126/sciadv.abn7192